الگوریتم بهینهسازی خرگوش مصنوعی(Artificial rabbits optimization) یکی از الگوریتمهای فراابتکاری است که در سال 2022 در ژورنال معتبر Engineering Applications of Artificial Intelligence از انتشارات الزویر چاپ شده است. در این تحقیق، الگوریتم بهینهسازی خرگوش مصنوعی برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده الگوریتم بهینهسازی خرگوش مصنوعی با الگوریتم بهینهسازی اجتماع ذرات(Particle swarm optimization)، الگوریتم جستجوی گرانشی(Gravitational Search Algorithm)، الگوریتم کلونی زنبور مصنوعی (artificial bee colony)، الگوریتم تکامل تفاضلی(Differential Evolution) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم بهینهسازی خرگوش مصنوعی در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است.
الگوریتم بهینهسازی غذایابی سفره ماهی(Manta ray foraging optimization) یکی از الگوریتمهای فراابتکاری است که در سال 2020 در ژورنال معتبر Engineering Applications of Artificial Intelligence از انتشارات الزویر چاپ شده است. در این تحقیق، الگوریتم بهینهسازی غذایابی سفره ماهی برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده، الگوریتم بهینهسازی غذایابی سفره ماهی با الگوریتم بهینهسازی اجتماع ذرات(Particle swarm optimization)، الگوریتم جستجوی گرانشی(Gravitational Search Algorithm)، الگوریتم کلونی زنبور مصنوعی(Artificial bee colony)، الگوریتم تکامل تفاضلی(Differential Evolution) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم بهینهسازی غذایابی سفره ماهی در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است.
الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی(Artificial ecosystem-based optimization) یکی از الگوریتمهای فراابتکاری است که در سال 2020 در ژورنال معتبر Neural Computing and Applications از انتشارات اشپرینگر چاپ شده است. در این تحقیق، الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی با الگوریتم بهینهسازی اجتماع ذرات(Particle swarm optimization)، الگوریتم جستجوی گرانشی(Gravitational Search Algorithm)، الگوریتم کلونی زنبور مصنوعی(Artificial bee colony)، الگوریتم تکامل تفاضلی(Differential Evolution) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است.
الگوریتم جستجوی عقاب سرسفید(Bald Eagle Search Algorithm) یکی از الگوریتمهای فراابتکاری است که در سال 2019 ابداع شده است. این الگوریتم در ژورنال معتبر Artificial Intelligence Review از انتشارات اشپرینگر چاپ شده است. در این تحقیق، الگوریتم جستجوی عقاب سرسفید برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده، الگوریتم جستجوی عقاب سرسفید با الگوریتم بهینهسازی گرگ خاکستری(Grey Wolf Optimizer)، الگوریتم سینوس کسینوس(Sine Cosine Algorithm) و الگوریتم بهینهسازی اجتماع ذرات(Particle Swarm Optimization) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم جستجوی عقاب سرسفید در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است